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Abstract Licorice is a common herb which has been used in traditional Chinese medicine for centuries.
More than 20 triterpenoids and nearly 300 flavonoids have been isolated from licorice. Recent studies
have shown that these metabolites possess many pharmacological activities, such as antiviral,
antimicrobial, anti-inflammatory, antitumor and other activities. This paper provides a summary of the
antiviral and antimicrobial activities of licorice. The active components and the possible mechanisms for
these activities are summarized in detail. This review will be helpful for the further studies of licorice for
its potential therapeutic effects as an antiviral or an antimicrobial agent.
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1. Introduction

Licorice is a very well known herb in traditional Chinese medicine
(TCM). In China, it is called “gancao” (meaning “sweet grass”)
and has been recorded in the Shennong's Classic of Materia
Medica around 2100 BC. In this book, licorice was supposed to
have life-enhancing properties. During the following thousands of
years licorice has been present in most of Chinese traditional
prescriptions. It was believed to have the functions of nourishing
qi, alleviating pain, tonifying spleen and stomach, eliminating
phlegm, and relieving coughing1.

Glycyrrhiza uralensis Fisch., Glycyrrhiza inflate Bat. and
Glycyrrhiza glabra L. were prescribed as licorice in Chinese
pharmacopoeia2. They are widespread in Inner Mongolia, Gansu,
Heilongjiang, Ningxia, Qinghai and many other provinces in
China3. The roots and rhizomes are the main medicinal parts of
licorice. Numerous studies have revealed many pharmacological
activities of licorice, such as antiviral4,5, anti-inflammatory6,7,
antitumor8,9, antimicrobial10,11 and many other activities12,13.
Among the pharmacological activities of licorice mentioned
above, the antiviral and antimicrobial activities have been most
commonly reported. Viral and other microbial infections play a
critical role in many highly prevalent diseases, especially in
developing countries. The development of safe and effective
antiviral or antimicrobial agents is very important, and licorice
deserves more attention for its outstanding activities.

Licorice contains more than 20 triterpenoids and nearly 300
flavonoids. Among them, glycyrrhizin (GL), 18β-glycyrrhetinic
acid (GA), liquiritigenin (LTG), licochalcone A (LCA), licochal-
cone E (LCE) and glabridin (GLD) are the main active compo-
nents which possess antiviral and antimicrobial activities. Their
chemical structures are listed in Fig. 1.
2. The antiviral active components and their possible
mechanisms

Among the components isolated from licorice, 73 bioactive
components and 91 potential targets have been identified to
date14,15. Many studies have demonstrated that two triterpenoids,
GL16,17 and GA18, are responsible for the antiviral activity. The
possible mechanisms for virus prevention of GL and GA, and the
viral types are listed in Table 1.
Figure 1 The chemical structures of the antivira
2.1. GL

GL is one of the major compounds isolated from the roots of
licorice. In recent years, many studies have confirmed the antiviral
activity of GL. Matsumoto et al.16 reported that GL targeted the
release step in which infectious anti-hepatitis C virus (HCV)
particles were infecting cells. These findings indicated possible
novel roles for GL to treat patients suffering from chronic hepatitis
C. In another study, researchers also found that GL treatment
inhibited HCV titer and caused 50% reduction of HCV at the
concentration of 1472 μg/mL by inhibiting HCV full length viral
particles and their core gene expression19.

Previous studies showed that intercellular adhesion molecules
played an important role in some viral infections, such as human
immunodeficiency virus (HIV)20. Huang et al.5 found that the
adhesion force and stress between cerebral capillary vessel
endothelial (CCEC) cells and polymorph nuclear (PMN) leuko-
cytes were clearly increased in HSV infection; GL perfusion
significantly reduced adhesion force and stress between CCEC
and PMN.

Zhang's study21 reported that GL showed a significant improve-
ment of coxsackievirus B3 (CVB3)–induced myocarditis by
improving weight loss profile, reducing serological levels of
cardiac enzymes and increasing survival rate. This effect was
evidenced by significantly reduced expression of proinflammatory
cytokines, such as nuclear factor–κB, interleukin-1β and
interleukin-6. The inhibition of CVB3-induced nuclear factor–κB
activity blocks the degradation of nuclear factor–κB inhibitor IκB.
All these data suggested that GL had an effect on CVB3-induced
myocarditis and may present as a new therapeutic approach for the
treatment of viral myocarditis.

Soufy et al.22 found that GL had excellent immunostimulant
properties and induced a synergistic effect to duck hepatitis virus
(DHV) vaccine by activating T lymphocyte proliferation. Four
groups, control, GL treated, vaccinated with live attenuated DHV
vaccine and GL treated and vaccinated, were investigated. Among
them, treatment with GL alone or with DHV vaccine showed good
immune stimulant and antiviral effects against DHV. GL com-
bined with DHV vaccine produced higher antibody titers against
DHV than by the use of DHV vaccine alone.

Several studies have demonstrated that GL showed a significant
inhibiting effect to influenza virus. At a concentration of 100 μg/mL
(a therapeutically achievable concentration), GL weakened
l activity or antimicrobial components in licorice.



Table 1 The antiviral active components and their possible mechanisms for virus prevention.

Component Antiviral mechanism Viral type

GL Affect release step while infectious HCV particles are infecting cells. HCV
Inhibit HCV full length viral particles and HCV core gene expression.
Reduce adhesion force and stress between CCEC and PMN. HSV
Block the degradation of nuclear factor κB inhibitor IκB. CVB3
Activate T lymphocyte proliferation. DHV
Weaken H5N1-induced production of CXCL10, IL-6 and CCL5, and suppress H5N1-induced apoptosis. H5N1
Reduce HMGB1 binding to DNA, and inhibit influenza virus polymerase activity. Influenza virus
Inactivate CVA16 directly, while the effect of anti-EV71 is associated with an event(s) during the virus cell entry. CVA16 EV71
Establish a resistance state to HSV1 replication. HSV1

GA Reduce the levels of viral proteins VP2, VP6 and NSP2 at a step or steps subsequent to virus entry. Rotavirus
Prevent viral attachment, internalization and stimulate IFN secretion. HRSV
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H5N1-induced production of chemokine (C-X-C motif) ligand 10
(CXCL10), interleukin 6 (IL-6) and chemokine (C-C motif) ligand 5
(CCL5), and suppressed H5N1-induced apoptosis23. The high-
mobility-group box1 (HMGB1) DNA-binding site was indicated to
enhance influenza virus replication. GL could reduce HMGB1
binding to DNA, which inhibited influenza virus polymerase
activity24. Smirnov's study25 indicated that GL could be considered
a promising agent for the treatment of influenza.

Wang's study17 revealed that GL was an antiviral component in
licorice against enterovirus 71 (EV71) and coxsackievirus A16
(CVA16) infection with defined mechanisms. It activated CVA16
directly, while the effect of anti-EV71 was associated with an
event during the cell entry for virus.

GL was also a strong inducer of the autophagy activator Beclin
1. After 24 h of treatment, Beclin 1 production induced by GL was
more than two fold higher than that was induced by rapamycin, the
reference compound. GL was a strong inducer of Beclin 1, which
inhibited the replication of herpes simplex virus type 1 (HSV1)26.
Therefore, GL possessed its anti-HSV1 activity by establishing a
resistant state to HSV1 replication.

Above all, GL is an effective antiviral compound against HCV,
HIV, CVB3, DHV, EV71, CVA16, HSV and H5N1 by weakening
virus activity, such as inhibiting virus gene expression and
replication, reducing adhesion force and stress, and reducing
HMGB1 binding to DNA. The compound also enhances host cell
activity, e.g., by blocking the degradation of IκB, activating T
lymphocyte proliferation and/or suppressing host cell apoptosis.
2.2. GA

Compared with GL, studies of the antiviral activity of GA are
limited. GA treatment inhibited rotavirus replication, which likely
occurred at steps subsequent to virus entry. GA reduced rotavirus
yields by 99% when it was added to infected cultures post-viral
adsorption. The levels of viral proteins VP2, VP6 and NSP2 were
substantially reduced27. GA also showed potent anti-human
respiratory syncytial virus (HRSV) activity. It inhibited HRSV
mainly by internalization, stimulating interferon (IFN) secretion,
and preventing viral attachment18.

There is a difference between the antiviral profiles of GA and
GL. GA has activity against rotavirus and HRSV. However, the
antiviral mechanisms of these compounds are similar. GA exerts
its antiviral activity also by inhibiting virus replication, preventing
viral attachment or enhancing host cell activity.
3. The antimicrobial active components and their possible
mechanisms

Increasing antibiotic resistance has resulted in an urgent need for
alternative therapies to treat diseases. In recent years, many studies
have shown that licorice aqueous extract28, ethanol extract29 and
supercritical fluid extract30 have potent effects in inhibiting the
activities of Gram-positive bacteria and Gram-negative bacteria,
such as Staphylococcus aureus31, Escherichia coli32, Pseudomo-
nas aeruginosa33, Candida albicans and Bacillus subtilis34. These
extracts are also being considered as potential alternatives to
synthetic fungicides, or as lead compounds for new classes of
synthetic fungicides. Based on the above inhibitory activities
against bacteria, licorice may serve as an alternative therapy for
treating dental caries, periodontal disease, digestive anabrosis and
tuberculosis. The possible mechanisms for antimicrobial effects of
the active components and the microorganism types were listed
in Table 2.
3.1. GA

Methicillin-resistant S. aureus (MRSA) has become a main source
of infection in both hospitals and the community. Increasing
antibiotic resistance in S. aureus strains has created a need for
other therapies to treat disease. GA showed bactericidal activity to
destroy MRSA by decreasing the expression of SaeR and Hla, the
key virulence genes of MRSA31. Studies also indicated that GA
produced a better Th1 immune response than Th2 response. This
Th1-immunological adjuvant activity would be helpful in the
treatment of Th1-related disease caused by C. albican35.
3.2. Chalcones

Zhou et al.36 suggested that licochalcone E (LCE) could be used
for chemical synthesis of novel anti–S. aureus compounds which
could reduce the production of α-toxin in both methicillin-
sensitive S. aureus (MSSA) and MRSA. Licochalcone A (LCA)
and glabridin (GLD) showed antifungal activity on C. albicans.
They were both potent antifungal agents against C. albicans. LCA
(0.2 μg/mL) inhibited biofilm formation by 35%–60% and both
LCA and GLD had strong inhibitory effects (480%) in preventing
yeast-hyphal transition in C. albicans37.



Table 2 The antimicrobial active components and their possible mechanisms for microbe prevention.

Component Antimicrobial mechanism Microbial type

GA Decrease the expression of SaeR and Hla, which are the key virulence genes of MRSA. S. aureus
Exert the Th1-immunological adjuvant activity. C. albicans

LCA Inhibit the biofilm formation and prevent yeast-hyphal transition. C. albicans
LCE Reduce the production of α-toxin. S. aureus
GLD Prevent yeast-hyphal transition. C. albicans
LTG Decrease the production of α-hemolysin. S. aureus

The antiviral and antimicrobial activities of licorice 313
3.3. Liquiritigenin

α-Hemolysin is an important exotoxin in the pathogenesis of
S. aureus infections. Such infections are associated with a broad
spectrum of diseases ranging from endocarditis to minor skin
infections, toxinoses, and lethal pneumonia. Liquiritigenin (LTG),
one of the most significant active components in licorice, can
prevent human lung cells (A549) from α-hemolysin-mediated
injury by decreasing α-hemolysin production38. Such data suggest
that LTG is potentially useful in developing drugs which target
staphylococcal α-hemolysin.

In summary, one triterpene (GA) and four flavones (LCA, LCE,
GLD and LTG) seem to account for much of the antimicrobial
activity in licorice. These compounds can decrease the expression
of microbe genes, inhibit microbe growth and reduce the produc-
tion of microbe toxin.
4. Discussion

Presently we have summarized the antiviral and antimicrobial
activities of licorice. Many studies found that several components
were responsible for the antiviral and antimicrobial activities
through different mechanisms. Licorice contains more than 20
triterpenoids and nearly 300 flavonoids. Among them, only two
triterpenes, GL and GA have been reported to have antiviral
effects. They can weaken virus activities by inhibiting virus gene
expression and replication, reducing adhesion force and stress, and
reducing HMGB1 binding to DNA. They can also enhance host
cell activities by blocking the degradation of IκB, activating T
lymphocyte proliferation and suppressing host cell apoptosis. In
contrast, flavonoids, especially chalcones, play an important role in
the treatment of bacterial infection by decreasing expression of
bacterial genes, inhibiting bacterial growth and reducing the
production of bacterial toxin.

In addition, many studies have reported that the six active
compounds listed in this paper, GL, GA, LCA, LCE, GLD and
LTG, possess other activities. For example, GL and GA also have
antitumor39,40, anti-inflammatory41,42, and immunoregulatory
activities12,43,44. LCA, LCE, LTG and GLD also have inhibitory
effects on diabetes45–48. All of these reports demonstrate poten-
tially broad applications for these agents. In addition, there are
many other compounds isolated from licorice with different
pharmacological activities. For example, isoliquiritigenin (ISL)
shows effective immunoregulatory activity49, glabrol has an
inhibitory effect on diabetes50, and dehydroglyasperin C (DGC)
has hepatoprotective activity51.

Among the six compounds listed in this paper, only GL has been
clinically developed as a drug. As the most important marker
component in licorice, the development of GL preparations has a
long history in China, from GL tablets to ammonium glycyrrhizi-
nate, diammonium glycyrrhizinate and magnesium isoglycyrrhizi-
nate (MgIG). All of the above GL preparations possess antiviral and
antimicrobial activities. Diammonium glycyrrhizinate inhibits cell
infection by pseudorabies virus (PrV) and decreases cell apoptosis
during PrV infection52. Compared with diammonium glycyrrhizi-
nate, the fourth generation GL preparation, MgIG, has better
lipophilic properties, higher targeting activity and fewer adverse
reactions. It has been used in treating liver disease53–55, pulmonary
fibrosis56 and testicular injuries57. However, reports about mechan-
isms of antiviral and antimicrobial activities of MgIG are still very
limited. The development of new licorice preparations will improve
the safety and efficacy of licorice-related products.

In many African countries with poorly developed health care
systems, viruses and bacteria are significant sources of disease.
More than 2 billion people have been exposed to HBV over the
world, and the situation in some areas of Africa is much more
serious58. The development of effective and affordable licorice-
related medicines could introduce dramatic improvements in
treating the many prevalent diseases of third world populations.
It is hoped that the present work will facilitate the development of
improved licorice preparations with antiviral and antimicrobial
activities.
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